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The tree-like structure of dendrimers,1,2 which are made up
of repeating units arranged in a hierarchical, self-similar fashion
around a core, raises the possibility of their application as
artificial antenna systems.3-5 What makes these supramolecules
promising candidates as artificial antennae is the large number
of absorbing units that grows exponentially with their generation
number2 and the relatively short distance of the periphery from
the center, where a fluorescent trap, a reaction center, or a
chemical sensor can be located. Dendrimers are therefore
expected to harvest light and transfer it to a trap at the center
with high efficiency. We have recently demonstrated5 some
characteristic antenna properties in a family of symmetric
dendrimers and distinguished between compact and extended
structures. The absorption spectra of the latter suggest the
existence of an energetic funnel that may channel optical
excitations to the center.5,6

Here we present an exact solution for the mean first passage
time (MFPT),〈τ〉, i.e., the mean time for an excitation that starts
at the periphery to reach the center. The MFPT is a measure
of the efficiency of the collection process and can be directly
determined from experiments. We discuss the dependence of
the MFPT on the size of the dendrimer and on the interplay
between geometric and energetic aspects. Figure 1 presents
schematically a symmetric dendrimer of four generations (g )
4), with a trap at the center and with coordination numberz)
3, which means that each branch splits intoz - 1 ) 2 new
branches. The special casez) 2 corresponds to a linear chain.
An excitation on the dendrimer migrates to a nearest site of a
higher generation with a rateK1 and to a nearest site of a lower
generation with a rateK2. Both rates depend on the coordination
number and on the local rateskup (n f n + 1) andkdown (n f
n - 1) correspondingly;n is the generation number, 1e n e
g.
From simple probabilistic considerations, one concludes that

for coordination numberz (z > 2) the rate “up”, toward the
periphery, is

and the rate “down”, toward the trap, is

Migration on the dendrimer in Figure 1 can be shown to be
equivalent7,8 to a random walk on aone-dimensional chain,
shown in Figure 2, where each site represents the corresponding
generation in the dendrimer and with jump ratesK1 andK2.
This equivalence between dynamics on a dendrimeric struc-

ture and on a chain enables calculation, in a simple way, of
some of the quantities related to energy migration in dendrimers.
The rateskup andkdown are usually distance dependent and may
have also an energy difference contribution. Ifkup) kdown, only
the spatial geometry enters, so thatK1 > K2. Namely,
symmetric dendrimers are characterized by aninherent, geo-
metrically induced biastoward the periphery. To our knowl-
edge, this is a property unique to these supermolecules. One
can now superimpose on the geometric bias an energetic funnel,
descending from the periphery to the origin, which acts as a
counterbias to the geometric one. The competing biases
introduce the possibility for a novel control of the energy transfer
and trapping efficiency.
The MFPT,〈τ〉, which measures the trapping efficiency, is

obtained by solving the set of differential equations which
describes the one-dimensional equivalent system in Figure 2:

wherepn(t) is the probability that there is still an excitation at
time t in the nth generation (1e n e g). The survival
probability of an excitation, initially prepared in the periphery,
is

The above set of differential equations has a matrix representa-
tion:

Diagonlizing the matrix leads to the survival probability8
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K1 ) kup(z- 1) (1)

K2 ) kdown (2)

Figure 1. Schematic presentation of a dendrimer of four generations,
g ) 4, and branchingz ) 3.

Figure 2. One-dimensional equivalent of Figure 1. The origin
corresponds to the trap and sites 1, 2, 3, and 4 to the four generations.

p̆1(t) ) K2p2(t) - (K1 + K2)p1(t) (3)

p̆n(t) ) K2pn+1(t) + K1pn-1(t) - (K1 + K2)pn(t) (1< n< g)

p̆g(t) ) K1pg-1(t) - K2pg(t) (reflecting boundary condition)
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where-λi, 1 e i e g, are eigenvalues of the matrixA. The
survival probability is the experimental observable in time
evolution experiments of trapping. The MFPT is directly related
to the survivalΦ(t) and is given by9

We now present the dependence of〈τ〉 on the size (number
of generations of the dendrimer) and on the rates toward and
from the periphery. A complete calculation, and the analogy
of the solution to queueing theory, will be presented elsewhere.8

For a finite but large dendrimer (g. 1), the different behaviors
can be classified as follows:

The competition betweenK1 andK2 opens the possibility for
controlling the trapping efficiency, covering a range from
exponential(less efficient trapping) dependence tolinear (very
efficient trapping) dependence of〈τ〉 on size.
The exponential dependence of〈τ〉 on g corresponds to the

geometrically dominated regime, while the linearg dependence
stems from the energy funnel effect. The crossover caseK1 )
K2 has a typical one-dimensional behavior〈τ〉 ≈ g2. In Figure
3, we display the MFPT vs the number of generations of a
dendrimer for different values of the ratesK1 and K2. The
problem solved here is closely related to the effect of a bias in
a protein folding model discussed by Zwanzig et al.,10 where
calculation of the MFPT to reach the native configuration
demonstrates a change from an inefficient random search
(exponential in the number of building unit) to an efficient

biased search. This again emphasizes the difference between
random and funnel-assisted exploration of space to reach a trap.
The idea to control the trapping process by using the interplay
between geometric bias and energetic funnel in dendrimers
should be considered when designing artificial antennae.11

Synthesizing extended vs compact dendrimers is the first step
in this direction.5
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Figure 3. Dependence of the MFPT,〈τ〉, on dendrimer size,g. Plotted
are the different cases in the table. Note the large effect of the energetic
bias. As an example forg ) 10, 〈τ〉, in 1/K1 units, scales as 4072:55:9
for K1 ) 2K2, K1 ) K2, andK1 ) 0.5K2, respectively.
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